## **Mechanical Systems Laboratory: Lecture 3**

Analysis of a 1<sup>st</sup>-order, Low-Pass Filter Circuit in the Time and Frequency Domains The following circuit is a low-pass filter. It is useful to clean up signals with high frequency noise on it:



## 1. Time Domain Analysis

Let's analyze the response of this circuit to a step input

We'll use the method of undetermined coefficients to solve the differential equation. You can remember this very useful technique for linear, ordinary, differential equations using the following mnemonic:

- 1. Generals: set the forcing function = 0 and find the general solution to homogenous equation (don't evaluate it's coefficient yet)
- are Particular: find the particular solution (assume particular soln is same form as forcing function)
- 3. about Initial Conditions: sum the homogenous and particular solutions and solve for the coefficient to the homogenous equation that satisfies the initial conditions.

KVL: 
$$-V_i + iR + V_0 = 0$$
 Homog.  $V_i = Ae^{-t/T}$   $T = RC$ 
 $C = CdV_0$ 
 $RC = CdV_$ 

- Method of undetermined coefficients for solving a differential equation.
- Time constant: a 1<sup>st</sup> order system has gone 63% of the way to its final value after one time constant standard engineering technique for quantifying "how fast" a system responds.

## 2. Frequency Domain Analysis

Let's analyze how this system responds to a sinusoidal input. Remember: sine in ⇒ sine out (scaled and shifted), for a linear system. We will use three methods to find the scaling and shifting. Method 1. Solve differential equation using method of undetermined coefficients (difficult) Assume Vij = Sin with

Homogenous solution: 
$$V_h = Ae^{-t/\gamma}$$
 Note as  $t \to \infty$   $V_h \to 0$  (Transient")

Particular solution: try. 
$$V = a \sin(\omega t + \phi)$$
 where  $a + \phi$  are unknown substitutes  $A \cos(\omega t + \phi) = \frac{a}{RC} \sin(\omega t + \phi) + \frac{a}{RC} \sin(\omega t + \phi) + \frac{a}{RC} \sin(\omega t + \phi) + \frac{a}{RC} \sin(\omega t + \phi) = \frac{a}{RC} \sin(\omega t + \phi) + \frac{a}{RC} \sin(\omega t + \phi) = \frac{a}{RC} \sin(\omega t + \phi) + \frac{a}{RC} \sin(\omega t + \phi) = \frac{a}{RC} \sin(\omega t + \phi) + \frac{a}{RC} \sin(\omega t + \phi) = \frac{a}{RC} \sin(\omega t + \phi) + \frac{a}{RC} \sin$ 

Method 2: Take Laplace Transform of differential equation that describes circuit, find the transfer function, and solve for frequency response (easier than Method 1)

## Brief review of complex variables:

Complex variables keep track of two pieces of information, real and imaginary part, or magnitude and phase

Can think of complex variables as a point in the complex plane.

Can write point in Cartesian or polar coordinates. Sa ottow

To find the magnitude in Cartesian form: 
$$|S| = \sqrt{\sigma^2 + \omega^2} = R$$
To find the phase in Cartesian form:

To find the phase in Cartesian form:

To find the phase in Cartesian form: 
$$\phi_{S} = \phi_{S} + \phi_{S} = \phi$$
Magnitude of two complex variables divided by each other: 
$$\frac{R_{S}e}{R_{Z}e}$$
Phase of two complex variables divided by each other:

Now, find the transfer function and frequency response: 
$$\frac{R_1}{R_2} e^{j(d_1 - d_2)}$$

$$\frac{dV_0}{df} = \frac{1}{RC} V_0 + \frac{1}{RC} V_0 = \frac{1}{RC} V_0 + \frac{1}{$$

| w S= O+jw                               |
|-----------------------------------------|
| Real Real                               |
| S= 6+jw                                 |
| = Roosø + jRsm ø                        |
| 141 - 1R1 = Re14                        |
| 1921 1R21 Follows law of = rasd + ising |

Now, find the transfer function and frequency response:  $\frac{R_2 e^{j\varphi_2} 1}{R_2} |R_2| = \frac{R_1}{R_2} e^{j(\varphi_1 - \varphi_2)}$ (can derive by Taylor's expansion)  $\frac{dV_0}{dt} = \frac{1}{R_2} V_0 + \frac{1}{R_2} V_0 = \frac{1}{R_2} V_0 + \frac{1}{R_2} V_0$ Method 3: Use "impedances" to find transfer function (easiest)  $\frac{V_0}{V_0} = \frac{1}{R_2} V_0 + \frac{1}{R_$ 

| Circuit element | Time domain                    | Frequency domain | Impedance |  |
|-----------------|--------------------------------|------------------|-----------|--|
| Resistor        | V(t) = RI(t)                   | V(s) = R I(s)    | R         |  |
| Capacitor       | $V(t) = \frac{1}{C} \int i(t)$ | v(s)= 1/5c I(s)  | Sc        |  |
| Inductor        | V(t) = L di/dt                 | V(s) = SL ICS)   | SL        |  |

Note: All the usual circuit rules till hold in the frequency domain because of superposition (KVL, KCL, Op amp rules, voltage divider...). So, treat impedances like (frequency dependent) resistors in finding a circuit's transfer function.

 $V_0 = \frac{1}{8+1} V_1 = \frac{1}{1+RCS} V_2 = \frac{1}{V_2} = G(S) = \frac{1}{1+RCS}$ 

What do the magnitude response (i.e. scaling or attenuation factor) and phase shift response actually look like? Fill in the following chart:

|                               | Magnitude or Scaling | Phase |
|-------------------------------|----------------------|-------|
| Small w                       | 1                    | 0     |
| $\omega = 1/RC = 1/\tau$      | V= -,707             | -45°  |
| $\omega \Rightarrow infinity$ | 0                    | -90°  |





The frequency 1/t is called the "corner frequency" or "bandwidth" of the system. For this low-pass filter, input sinusoids with a frequency higher than the bandwidth are "filtered" or "attenuated". Summary of important concepts:

- How to find a transfer function and the frequency response
- **Impedances**
- Corner frequency