Mechanical Systems Laboratory: Lecture 3
Analysis of a 1¥-order, Low-Pass Filter Circuit in the Time and Frequency Domains
The following circuit is a low-pass filter. It is useful to clean up signals with high frequency noise on it:
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1. Time Domain Analysis &

Let’s analyze the response of this circuit to a step input

We’ll use the method of undetermined coefficients to solve the differential equation. You can remember this

very useful technique for linear, ordinary, differential equations using the following mnemonic:

1. Generals: set the forcing function = 0 and find the general solution to homogenous equation (don’t evaluate
it’s coefficient yet)

2. are Particular: find the particular solution (assume particular soln is same form as forcing function)

3. about Initial Conditions: sum the homogenous and particular solutions and solve for the coefficient to the
homogenous equation that satisfies the initial conditions.
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Summary of important concepts:
e Method of undetermined coefficients for solving a differential equation. Cr 2
e Time constant: a 1% order system has gone 63% of the way to its final value after one time constant —
standard engineering technique for quantifying “how fast” a system responds.

2. Frequency Domain Analysis

Let’s analyze how this system responds to a sinusoidal input. Remember: sine in = sine out (scaled and

shifted), for a linear system. We will use three methods to find the scaling and shifting.

Method 1. Solve differential equation using method of undetermined coefficients (difficult) Acsone Vo= 51@’& T
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Useful trig. identity: Acos(8) + Bsin(8) = ,/A> + B* sin(@ + tan™ (—4))
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Method 2: Take Laplace Transform of differential equation that describes circuit, find the transfer function, and
solve for frequency response (easier than Method 1)

Brief review of complex variables:
Complex variables keep track of two pieces of information, real and imaginary part, or magnitude and phase

Semag ,
Can think of complex variables as a point in the complex plane. i ; A S= T4y
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Can write point in Cartesian or polar coordinates. >7 91y d -
To find the magnitude in Cartesian form: ,
Eg\zﬁ; «{?52%(“;&‘: ({ 57» §‘§’§W
To find the phase in Cartesian form: , . A
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Magnitude of two complex variables divided by each other: 2.c 14 ‘\w E f;} = R, ) &
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Now, find the transfer function and frequency response: ) e’ =) ( o Feve %j ?&;1 s é‘fw‘i’i‘m’g
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Method 3: Use 1mpedances” to flgﬁ’transfer function (easiest)
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Circuit element Time domain Frequency domain Impedance
Resistor V(t) = RI(t) V(s) =R I(s) R
Capacitor 1 ¢. o e
V) = ° _[l(t) VT g 1) Ze

Inductor V(t) = L di/dt visy= SL 1o S

Note: All the usual circuit rules till hold in the frequency domain because of superposition (KVL, KCL, Op amp
rules, voltage divider...). So, treat impedances like (frequency dependent) resistors in finding a circuit’s transfer
function. 2.;1 { y A 1
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What do the magnitude response (i.e. scaling or attenuation factor) and phase shift response actually look like?
Fill in the following chart:

Magnitude or Scaling Phase
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The frequency {/% is called the “corner frequencfy” or “bandw1dth” of the system. For this low-pass filter, input
sinusoids with a frequency higher than the bandwidth are “filtered” or “attenuated”.
Summary of important concepts:
e How to find a transfer function and the frequency response
e [Impedances
o Corner frequency



